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Differential-Difference Properties 
of Hypergeometric Polynomials * 

By Jet Wimp 

Abstract. We develop differential-difference properties of a class of hypergeometric poly- 

nomials which are a generalization of the Jacobi polynomials. The formulas are analogous 

to known formulas for the classical orthogonal polynomials. 

I. Introduction. In this paper, we derive a differential-difference equation satis- 
fied by the hypergeometric polynomials 

(1) Pn(X) = p+2Fq n=, 1, 2, 

Throughout, we employ the shorthand notation 

p 

(2) (ap + n) = fl (ai + n), etc., 
j= I 

see [1] . In general, where any variable is subscripted by a p or q, it is to be understood 
that the shorthand notation has been invoked. 

II. Results. 
THEOREM. Let 

(i) X *15 2, ; 

(ii) none of the quantities bp, X, X + 1 - b be negative integers or zero, j = 

1, 2,* *,q; 

(iii) no bl = any ah, h = 1, 2,5 . , p; X 2 1, 2, * * , q. Then the polynomials Pn(x) 
satisfy the differential-difference equation 

(3) (ex - 6X2) dPx = E (A v + xBv)Pn?v(X) 
he=0 

where 

Received October 5, 1973. 
AMS (MOS) subject classifications (1970). Primary 33A30, 33A65; Secondary 39A15. 
Key words and phrases. Recursion formula, differential-difference properties, hypergeometric 

polynomials. 
*This research was supported in part by the United States Air Force under Contract Number 

AFOSR-72-2288A. 
Copyright 0 1975, American Mathematical Society 

577 
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(4) 6= + I 
< q, e= 1 P + p >q, a= max {p + 1, q}, 

, p?l I<q, 1, p?l? <q, 

and no such equation of lower order a' < a exists. The A 's and B 's are unique and 

te~ ~ ~ -l[( nW v (2v - 2n -X) 

(5) A= + 
E (v+s-2n )- 7 > o; 

S= 

n -(bg ? n -i) 
t n - 6((2On + ?X- a) v =o; 

(-n) [(I - n -X)j -1(2v -2n - ) 

(6) Bp = 3 { ~(_) o+ Iv- j 
(I -v)s(a, + n - s - 

-5n, v=O. 

Proof By equating coefficients of xk+ 1 in (3) we find 

(k + 1) {e(k - n)(ap + k)3_ l(k)- k (bq + k)30(k)} 

(7) a a 

(ap + k) , C_a ,?i(k)(vl(k) + (k + l)(bq ? k) E DVa0(k)f3V(k), 
v-0 v=0 

where 

CV (-) (1 -n - X)v EAV 

(8) LDU-n, LBJ 
oav(k) = (k-n), fv(k) = (n + X + k -)O- v 

The above can be considered an identity between polynomials in the (generally 

complex-valued) variable k. If p + 1 > q, (7) requires that two polynomials of degree 

p + a + 2 be identical; this condition furnishes p + a + 3 equations in 2a + 2 un- 

knowns, so that we must have a < p + 1. If p + 1 = q, we similarly find a < p + 1, 

while, if p + 1 < q, we find that a < q. Thus 

(9) a < max{p + 1, q}. 

Now, if we assume equality above, the Av and BV (if they exist) are unique. Suppose 

there is another such recurrence relation with coefficients A * and B*. Subtracting 
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these two, we have 

(1 0) 0= [(A v-A + x(Bv -B*)] Pn x), 
1)=? 

but this is impossible, under the hypotheses (ii) and (Wii), since the author has shown 
that in this case any linear difference equation satisfied by Pn(x) must be of order 
a + 1, at least, see [1] . 

Now, if q = p + 1, (7) holds if and only if 

a 

(11) (k? 1) [30(k+ 1)e-(bq +k)]-- Cv,a,v(k?+ 1)v, (k+ 1), 
V=0 

a 
(12) (n + X + k-cJ) [-6 k3 1 (k + ? ) + (k-n) (ap + k)]- DL, v(k)Ov (k) 

1)=? 

(Note that a suitable linear combination of (11) and (12) gives (7), i.e., multiply (11) 
by (k - n)(n + X + k - u)(ap + k) and (12) by (k + l)(bq + k) and add.) To es- 
tablish (11) for p + 1 = q, we observe that it represents an identity between two poly- 
nomials in k, each of degree q + 2 and each having two identical factors. It only re- 
mains to show that (11) holds for q + 1 distinct values of k. Assume that all the 
quantities -1, -bj, j = 1, 2, * , q, are distinct and let k have these values in (7). 
The result is (11) evaluated at these values. 

Similarly to show (12) for p + 1 = q, we need only prove that it holds for the 
p + 2 values (assumed distinct) n, a - n - X, -a, j = 1, 2, , p. This is true, 

since (7) and (12) for these values are the same. 
(The requirement that the values of k chosen above be distinct may be relaxed by 

continuity.) 
Now, replace x by x/a, j=p' + 1, p' + 2, , q-1 in (3), where p' < q-1. 

This shows that 

dP (x) ar 
(13) nd = E (Cv + xD,-)(x)(- (1- n -)v(-n)v 

zV=0 

where Pn(x) is P (x) with p replaced by p' and 

= liim im * lim [Dv/auau+ 1 *av] 
au? au+ I? av--.0 

(14) u=p'+ 1, v=q-1. 

The same limit process applied to (12) yields the following equation for the de- 
termination of D,: 

a 
(15) (k - n)(n + X + k - u)(ap, + k) = E D>'(k)0j3(k). 

z'=0 

The equation for Cv in this case is (11) as it stands. But (11) and (15) together 
are (11) and (12), respectively, written for p + 1 < q. 
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Similarly, replacing x by xb;, j = q' ? 1, q' + 2, ** ,p + 1, q' < p, and letting 

b1 ?? in (3) gives 

(16) -x 2dP()=E (Cv + xDv)P,_v(x)(-)v(l 
- nX)v(-n) - 

where 

(17) Cv = lim lim lim (Cvl/bubu+1 * bv), u=q'+1, v=p+1, 
bu-+o bu+1i?+ bv+oo 

and P"(x) is Pn(x) with q replaced by q'. This limit process applied to (11) gives 
a 

(18) -(k? l)(bq ?k)= ; C'avl(k + 1)jv(k + 1), 
z=0 

and (12) is used unchanged for D,,. These two equations, though, are just (11) and 

(12) for p + 1 > q. 
Thus (11) and (12) are established for all p, q and we have succeeded in "un- 

coupling" Eq. (7) to give Eqs. (I 1) and (1 2),which involve Cv and Dv, alone, respectively. 
Next, we solve these two equations. 
In Eq. (11), let k + 1-n = -s, s = 0, 1, 2,5 ., a. The result can be written 

s (-)V CL(-S)V (-)a+g1(n - s)(n + bq - s - 1) 

(19) (s + ?-2n-X)v e(n s) (s + 1-2n-lX)a,s 
V=O ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ =O ,,,X 

But if.1 - 2n - X # 0, -1, -2, * , the above equation can be solved for Cv by ap- 

plying a lemma of Wimp [1]. After some algebra and evaluation of 2F1's of unit ar- 

gument, one arrives at (5). To find the D,'s, let k - n = -s in (12) and proceed in 

a similar fashion. 

III. Concluding Remarks. If p + 1 = q and x = 1 in (3), we get a recursion 

relation for Pn(l) of order max (p + 1, q). Note that this is of order one less than 

that obtained by putting x = 1 in the homogeneous linear difference equation satis- 

fied by Pn (x) given in [1] . If p = 1, the resulting recursion relation for 

(20) 3F2 (-n,n ,a1 i a ) 

is that given by Bailey [3], which in turn is Watson's result [2] slightly rewritten. 
For p + 1 = q and x general, (3) of course provides a generalization of the classical 

differential-difference formula for the Jacobi polynomials, see [4, p. 170 (15)]. 
A differential-difference relation for the polynomials 

(21) Qn (x) = .F /n, a,, a2, * , apI 
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can easily be obtained from (3) by replacing x by x/X and letting X -+ oo. 

We point out that the conditions of the theorem can be relaxed considerably. If 

X is a positive integer m, we can write 

(22) (-n)/(l -n-X), = n!(n + 1-v)m Ir(n + m), 

which is well defimed for all n, so condition (i) is not essential to the analysis. 

Also, if any of the quantities (ii) are negative integers or zero, limits may be 

taken after the equation has been multiplied by a suitable factor, see [1]. The quan- 

tity n can even be nonintegral when q > p + 1 or when q = p + 1 and Iarg(1 -x)I 

< -, by the permanence principle for functional equations. (It may be necessary, in 

this case, to multiply the equation by a factor (r - n - X) to make the coefficients 

well defined.) 
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